
Building	Virtual	Assistants	
with	Rasa
Share	&	Learn	Seminar	

Yi	Li
07/08/2022



Virtual	Assistants	vs	
Chatbots:	What’s	
the	Difference

https://freshdesk.com/customer-engagement/virtual-assistant-chatbot-blog/

In	general,	a	virtual	assistant	includes	
the	functions	of	a	chatbot,	but	also	
support	voice	rather	than	only	text.	

Three	main	technologies	of	a	virtual	
assistant:
- Automatic	Speech	Recognition	(ASR)
- Text	To	Speech	(TTS)
- Natural	Language	Understanding	(NLU)



Rasa	Open	Source
Rasa	is	an	open	source	machine	learning	framework	for	automated	text	and	voice-
based	conversations.	Understand	messages,	hold	conversations,	and	connect	to	
messaging	channels	and	APIs.



Building	
Virtual	

Assistants	
- Basics	



Building	
Virtual	

Assistants	
- Basics	



Building	
Virtual	

Assistants	
- Basics	



Building	
Virtual	

Assistants	
- Basics	



Building	
Virtual	

Assistants	
- Basics	



Basic	Folder	Structures	of	Scripts

Related	GitHub	Repos
https://github.com/RasaHQ/rasa
https://github.com/RasaHQ/rasa-sdk
https://github.com/RasaHQ/rasa-demo
https://github.com/RasaHQ/helm-charts
https://github.com/RasaHQ/rasa-x-helm



Rasa	Action	Server

A	Rasa	action	server	runs custom	
actions (e.g.	API	calls,	database	queries,	
etc.) for	a	Rasa	Open	Source	conversational	
assistant.

How	it	works
• When	your	assistant	predicts	a	custom	

action,	the	Rasa	server	sends	
a POST request	to	the	action	server	with	a	
json payload	including	the	name	of	the	
predicted	action,	the	conversation	ID,	the	
contents	of	the	tracker	and	the	contents	
of	the	domain.

• When	the	action	server	finishes	running	a	
custom	action,	it	returns	a	json payload	
of responses and events.

https://rasa.com/docs/action-server/



Model	Configuration	– NLU	Pipeline
Supported	components	for	building	NLU	model	pipelines:

• Language	Models
• MitieNLP
• SpacyNLP

• Tokenizers
• WhitespaceTokenizer
• JiebaTokenizer
• MitieTokenizer
• SpacyTokenizer

• Featurizers
• MitieFeaturizer
• SpacyFeaturizer
• ConveRTFeaturizer
• LanguageModelFeaturizer
• RegexFeaturizer
• CountVectorsFeaturizer
• LexicalSyntacticFeaturizer

https://rasa.com/docs/rasa/components

• Intent	Classifiers
• MitieIntentClassifier
• LogisticRegressionClassifier
• SklearnIntentClassifier
• KeywordIntentClassifier
• FallbackClassifier

• Entity	Extractors
• MitieEntityExtractor
• SpacyEntityExtractor
• CRFEntityExtractor
• DucklingEntityExtractor
• RegexEntityExtractor
• EntitySynonymMapper

• Combined	Intent	Classifiers	and	Entity	Extractors
• DIETClassifier (https://arxiv.org/pdf/2004.09936)

• Selectors
• ResponseSelector

config.yml example:



Dual	Intent	and	Entity	Transformer	(DIET)	Classifier

https://arxiv.org/pdf/2004.09936
https://www.youtube.com/watch?v=vWStcJDuOUk&list=PL75e0qA87dlG-za8eLI6t0_Pbxafk-cxb&index=2



Model	Configuration	– Dialogue	Policies

Your	assistant	uses	policies	to	decide	which	action	to	take	at	
each	step	in	a	conversation.	There	are	machine-learning	and	
rule-based	policies	that	your	assistant	can	use	in	tandem.

Supported	policies:
• Action	Selection

• Policy	Priority
• Machine	Learning	Policies

• TED	Policy	(https://arxiv.org/abs/1910.00486 )
• UnexpecTED	Intent	Policy
• Memoization	Policy
• Augmented	Memoization	Policy

• Rule-based	Policies
• Rule	Policy

• Configuring	Policies
• Max	History
• Data	Augmentation
• Featurizers

• Custom	Policies

https://rasa.com/docs/rasa/policies

Transformer	Embedding	Dialogue	(TED)	Policy



Transformer	Embedding	Dialogue	(TED)	Policy

https://www.youtube.com/watch?v=j90NvurJI4I&list=PL75e0qA87dlG-za8eLI6t0_Pbxafk-cxb&index=14



Rasa	Open	Source	Architecture

https://rasa.com/docs/rasa/arch-overview

Dialogue Policies decides the 
next action in a conversation 
based on the context. 

NLU Pipeline handles intent 
classification, entity 
extraction, and response 
retrieval. 

Supported	channel	connectors:
• REST	Channels
• Websocket Channel
• Facebook	Messenger,	

Google	Hangouts	Chat,	
Microsoft	Bot	Framework,	
Slack,	Telegram,	etc.

Action Server runs custom 
actions (e.g. API calls, 
database queries, etc.) for 
a Rasa Open Source 
conversational assistant.



Conversation-Driven	
Development	(CDD)	with	Rasa	X
Rasa	X	is	a	tool	for	Conversation-Driven	Development	(CDD),	the	process	of	
listening	to	your	users	and	using	those	insights	to	improve	your	AI	assistant.



Rasa X:
• layers on top of Rasa Open 

Source and helps you build 
a better assistant

• is a free, closed source tool 
available to all developers

• can be deployed anywhere, 
so your training data stays 
secure and proprietary

https://rasa.com/docs/rasa-enterprise/1.0.x

Rasa X: 
• Share your assistant with users
• Review conversations on a 

regular basis
• Annotate messages and use 

them as NLU training data
• Test that your assistant always 

behaves as you expect
• Track when your assistant fails 

and measure its improvement
• Fix how your assistant handles 

unsuccessful conversations



Rasa	X	Architecture

https://rasa.com/docs/rasa-enterprise/1.0.x/api/architecture

Rasa	Open	Source	can	run	
completely	independently	of	Rasa	X.	
Rasa	X	on	the	other	hand	depends	
on	the	Rasa	Open	Source	service	for	
handling	conversation	data,	model	
training	and	running.

Blue:	Rasa	Open	Source	services

Purple:	Rasa	X	services


