Building Virtual Assistants
with Rasa

Share & Learn Seminar
Yi Li
07/08/2022

Virtual Assistants vs
Chatbots: What'’s
the Difference

In general, a virtual assistant includes
the functions of a chatbot, but also
support voice rather than only text.

Three main technologies of a virtual
assistant:

- Automatic Speech Recognition (ASR)

- Text To Speech (TTS)

- Natural Language Understanding (NLU)

Technology

W Core-
- functionality

% Channels

Chatbot

Rule-based programs
Machine learning

Natural language
processing

Assists businesses and
customers

Serves as an experiential
platform

Websites

Support portals
Messaging channels
Mobile applications
In-app chat widgets

Conversational user
interface

C%

Virtual agent

* Machine learning

+ Natural language processing

+ Natural language understanding
« Artificial emotional intelligence

« Assists users with everyday

tasks

+ Engages in casual or fun

conversations

« Mobile phones
+ Laptops
« Smart speakers and

interactive devices

» Chat-like interface

+ Voice commands

https://freshdesk.com/customer-engagement/virtual-assistant-chatbot-blog/

Rasa Open Source

Rasa is an open source machine learning framework for automated text and voice-
based conversations. Understand messages, hold conversations, and connect to
messaging channels and APIs.

Building
Virtual

Assistants
- Basics

1. NLU data 2. Responses 3. Stories 4. Forms

What are the various things people might say to an

assistant that can help them subscribe to a newsletter?

For an assistant to recognize what a user is saying no
matter how the user phrases their message, we need to
provide example messages the assistant can learn from.
We group these examples according to the idea or the goal
the message is expressing, which is also called the intent.
In the code block on the right, we have added an intent
called greet, which contains example messages like “Hi”,

“Hey”, and “good morning”.

Intents and their examples are used as training data for the

assistant's Natural Language Understanding (NLU) model.

Learn more about NLU data and its format

Next step >>

5. Rules

nlu:

- intent: greet
examples: |
Hi
Hey!

Hallo
Good day

Good morning

intent: subscribe

examples: |

- I want to get the newsletter
- Can you send me the newsletter?

- Can you sign me up for the newsletter?

intent: inform

examples: |
My email is example@example.com
random@example.com
Please send it to anything@example.com

Email is something@example.com

Building
Virtual

Assistants
- Basics

1. NLU data 2. Responses 3. Stories 4. Forms

Now that the assistant understands a few messages users

might say, it needs responses it can send back to the user.

“Hello, how can | help you?” and “what’s your email
address?” are some of the responses our assistant will use.
You’ll see how to connect user messages and responses in

the next steps.

In the code block below, we have listed some responses
and added one or more text options for each of them. If a
response has multiple text options, one of these options
will be chosen at random whenever that response is

predicted.

Learn more about responses

Next step >>

5. Rules

responses:
utter greet:
- text: |
Hello! How can I help you?
- text: |
Hi!
utter ask email:
- text: |
What is your email address?
utter subscribed:
- text: |
Check your inbox at {email} in order

to finish subscribing to the newsletter!

- text: |

You're all set! Check your inbox at

{email} to confirm your subscription.

1. NLU data 2. Responses 3. Stories 4. Forms 5. Rules

Stories are example conversations that train an assistant to stories:

respond correctly depending on what the user has said - story: greet and subscribe
previously in the conversation. The story format shows the steps:

intent of the user message followed by the assistant’s intent: greet

acﬂorlorresponse. action: utter greet

intent: subscribe

Your first story should show a conversation flow where the action: newsletter form
assistant helps the user accomplish their goal in a active loop: newsletter form
B Ul |d N g straightforward way. Later, you can add stories for

V| rt ua | situations where the user doesn't want to provide their

information or switches to another topic.

Assistants
- Ba S | CS In the code block below, we have added a story where the

user and assistant exchange greetings, the user asks to

subscribe to the newsletter, and the assistant starts

collecting the information it needs through the
newsletter_form. You will learn about forms in the next

step.

Learn more about stories

Next step >>

1. NLU data 2. Responses 3. Stories 4. Forms 5. Rules

There are many situations where an assistant needs to slots:
collect information from the user. For example, when a user email:
wants to subscribe to a newsletter, the assistant must ask type: text
for their email address. mappings:
- type: from text
You can do this in Rasa using a form. In the code block conditions:
below, we added the newsletter_form and used it to - active loop: newsletter form
. i collect an email address from the user. requested slot: email
Building —

VI rt u a | Learn more about forms here newsletter form:

required slots:

Assistants
- Basics

- email

Next step >>

1. NLU data 2. Responses 3. Stories 4. Forms 5. Rules

Rules describe parts of conversations that should always rules:
follow the same path no matter what has been said - rule: activate subscribe form

previously in the conversation. steps:

- intent: subscribe

We want our assistant to always respond to a certain intent - action: newsletter form
with a specific action, so we use a rule to map that action - active loop: newsletter form
to the intent.

rule: submit form

B u | | d | N g In the code block below, we have added a rule that triggers condition:
V| I’t ua | the newsletter_form whenever the user expresses the - active loop: newsletter form
. intent “subscribe”. We've also added a rule that triggers the steps:
ASSISta ntS utter_subscribed action once all the required information - action: newsletter form

- Ba S | CS has been provided. The second rule only applies when the - active_loop: null

newsletter_form is active to begin with; once it is no - action: utter_ subscribed

longer active (active_loop: null), the form is complete.

Learn more about rules and how to write them.

Now that you've gone through all the steps, scroll down to

talk to your assistant.

Cheat Sheet

Command

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

rasa

init

train

interactive

shell

run
run actions
visualize

test

data split nlu

data convert

data migrate

data validate

export

Effect
Creates a new project with example training data,
actions, and config files.
Trains a model using your NLU data and stories,
saves trained model in ./models .
Starts an interactive learning session to create new
training data by chatting to your assistant.
Loads your trained model and lets you talk to your
assistant on the command line.
Starts a server with your trained model.
Starts an action server using the Rasa SDK.
Generates a visual representation of your stories.
Tests a trained Rasa model on any files starting with
test_ .
Performs a 80/20 split of your NLU training data.
Converts training data between different formats.
Migrates 2.0 domain to 3.0 format.
Checks the domain, NLU and conversation data for
inconsistencies.
Exports conversations from a tracker store to an
event broker.

evaluate markers Extracts markers from an existing tracker store.

-h

Shows all available commands.

Basic Folder Structures of Scripts

actions

': __1init__.py
actions.py

config.yml

credentials.yml
data

': nlu.yml
stories.yml

domain.yml
endpoints.yml

models

L— <timestamp>.tar.gz
tests

L test_stories.yml

Related GitHub Repos
https://github.com/RasaHQ/rasa

https://github.com/RasaHQ/rasa-sdk

https://github.com/RasaHQ/rasa-demo

https://github.com/RasaHQ/helm-charts

https://github.com/RasaHQ/rasa-x-helm

Rasa Action Server

A Rasa action server runs custom

actions (e.g. API calls, database queries,
etc.) for a Rasa Open Source conversational
assistant.

How it works

* When your assistant predicts a custom
action, the Rasa server sends
a POST request to the action server with a
json payload including the name of the
predicted action, the conversation ID, the
contents of the tracker and the contents
of the domain.

* When the action server finishes running a
custom action, it returns a json payload
of responses and events.

https://rasa.com/docs/action-server/

Request to execute a custom action

Rasa dialogue management sends a request to the action server to execute a certain custom action. As a response to
the action call from Rasa, you can modify the tracker, e.g. by setting slots and send responses back to the user.

REQUEST BODY SCHEMA: application/json
Describes the action to be called and provides information on the current state of the conversation.

next_action string

The name of the action which should be executed.

sender id string

Unique id of the user who is having the current conversation.

tracker > object
Conversation tracker which stores the conversation state.

domain > object
The bot's domain.

Responses

> 200 Action was executed successfully.
> 400 Action execution was rejected. This is the same as returning an ActionExecutionRejected event.

— 500 The action server encountered an exception while running the action.

Model Configuration — NLU Pipeline

Supported components for building NLU model pipelines:

* Language Models .

MitieNLP
SpacyNLP

* Tokenizers

WhitespaceTokenizer
JiebaTokenizer

MitieTokenizer °
SpacyTokenizer

* Featurizers

MitieFeaturizer

SpacyFeaturizer

ConveRTFeaturizer
LanguageModelFeaturizer
RegexFeaturizer *
CountVectorsFeaturizer
LexicalSyntacticFeaturizer N

https://rasa.com/docs/rasa/components

Intent Classifiers
* MitielntentClassifier
* LogisticRegressionClassifier
* SklearnintentClassifier
* KeywordIntentClassifier
* FallbackClassifier

Entity Extractors
* MitieEntityExtractor
* SpacyEntityExtractor
* CRFEntityExtractor
* DucklingEntityExtractor
* RegexEntityExtractor
* EntitySynonymMapper

Combined Intent Classifiers and Entity Extractors
* DIETClassifier (https://arxiv.org/pdf/2004.09936)

Selectors

* ResponseSelector

config.yml example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

recipe: default.vl

language: en

pipeline:

name: "WhitespaceTokenizer"
name: "RegexFeaturizer"

name: "LexicalSyntacticFeaturizer"
name: "CountVectorsFeaturizer"
name: "CountVectorsFeaturizer"
analyzer: "char_wb"

min_ngram: 1

max_ngram: 4

name: "DIETClassifier"

epochs: 100

name: FallbackClassifier
threshold: 0.4
ambiguity_threshold: 0.1

name: "EntitySynonymMapper"

policies:

name: TEDPolicy
max_history: 5

epochs: 200

batch_size: 50
max_training_samples: 300
name: MemoizationPolicy
name: RulePolicy

Dual Intent and Entity Transformer (DIET) Classifier

./ Entity [Total Mask
"\ Loss | "\ Loss Loss |
\ Entity: O Entity: game_name | | Entity: game_name | - T A
Embedding Intent
p——
\ 4 \ 4 \ 4 Layer = Similarity ey
[CRF J—/ ‘F A -
A A 1 Embedding
> Layer
Similarity
s N
Embedding
Transformer (2 layers) Layer
- J
A

Feed-forward Feed-forward Feed-forward ‘ E'“f:;’;‘"g Feed-forward

A

Pretralned
forward embeddmg

Pretrained
forward embedding

Pretralned
forward embeddlng

Pretrained
forward embeddlng

A A A A A
Sparse Sparse Sparse Sparse
features features features features
\ play ‘ ‘ ping \ __MASK__ | _CLs__ | | Intent: play_game ‘ pong |

Figure 1: A schematic representation of the DIET architecture. The phrase play ping pong” has the intent

play_game and entity game_name with value ’ping pong”. Weights of the feed-forward layers are shared across

tokens. https://arxiv.org/pdf/2004.09936

https://www.youtube.com/watch?v=vWStc)DuOUk&Ilist=PL75e0qA87dIG-za8elLI6t0 Pbxafk-cxb&index=2

Model Configuration — Dialogue Policies

Your assistant uses policies to decide which action to take at
each step in a conversation. There are machine-learning and

rule-based policies that your assistant can use in tandem. Transformer Embedding Dialogue (TED) Policy
. WHERE DOES ATTENTION GO ©
Supported policies:
* Action Selection
* Policy Priority » «
Machine Learning Policies
* TED Policy (https://arxiv.org/abs/1910.00486)
* UnexpecTED Intent Policy
* Memoization Policy " like P'\Z’EO\“
* Augmented Memoization Policy
Rule-based Policies
* Rule Policy
Configuring Policies » (%
* Max History A(e You s \OO‘}
* Data Augmentation
* Featurizers
Custom Policies

UNIDIRECT/ONAL
TRANSFORMER

https://rasa.com/docs/rasa/policies

Transformer Embedding Dialogue (TED) Policy

Pas

5:0 quﬂ\é e__&*o
f §| é& e____§|
: o%I™ ..
¢ : Sl § 6——57_
i g e 7t
JDl??%(A_ —ﬁ ? 55 g % &__gs
pleV - 0 Sy
O\C‘HO“‘ 0 L\aé—
| e i
¢ 29 Q
L oJ é\\‘
lisken A& TRANSTORMER

W

DENSE

[a—

DENSE

T

DENSE

T

DENSE

ovnly looh. baclx
QH(V\)ﬂ- on (fut U\(-&\ =0

ST

RSPACE

https://www.youtube.com/watch?v=j90NvurJI41&list=PL75e09A87d|G-za8eLI6t0 Pbxafk-cxb&index=14

Rasa Open Source Architecture

== ===

Action Server runs custom | Rasa SDK
actions (e.g. API calls,
database queries, etc.) for
a Rasa Open Source
conversational assistant.

Conversation Tracker Tracker Lock Models/Training Data
Actions/
Events
. . . . ‘
Dialogue Policies decides the _
t action i i ~ Supported channel connectors:
next action in a conversation « REST Channels
based on the context. Input/Output « Websocket Channel
o .) - Channels * Facebook Messenger,
NLU Pipeline handles intent Google Hangouts Chat,
classification, entity -— > ¥ Microsoft Bot Framework,
extraction, and response Slack, Telegram, etc.
retrieval. |
Rasa Open Source F—

https://rasa.com/docs/rasa/arch-overview

Conversation-Driven
Development (CDD) with Rasa X

Rasa X is a tool for Conversation-Driven Development (CDD), the process of
listening to your users and using those insights to improve your Al assistant.

Continually improve your assistant using Rasa X

Ensure your new assistant passes tests
using continuous integration (Cl) and
redeploy it to users using continuous
deployment (CD)

Rasa X:

« layers on top of Rasa Open
Source and helps you build
a better assistant

« isafree, closed source tool
available to all developers

« can be deployed anywhere,
so your training data stays
secure and proprietary

Review conversations and
improve your assistant based
on what you learn

Collect conversations between
users and your assistant

Rasa X:

« Share your assistant with users

 Review conversations on a
regular basis

« Annotate messages and use
them as NLU training data

« Test that your assistant always
behaves as you expect

« Track when your assistant fails
and measure its improvement

* Fix how your assistant handles
unsuccessful conversations

https://rasa.com/docs/rasa-enterprise/1.0.x

Rasa X Architecture

Blue: Rasa Open Source services

Purple: Rasa X services

Rasa Open Source can run

completely independently of Rasa X.
Rasa X on the other hand depends
on the Rasa Open Source service for
handling conversation data, model

training and running.

Assistant in
Production

tracker events—

N

user messages /
bot responses

A

tracker
events

Bot Users

_ D .
— {Eif=sssoma-==2ia
“—7T > DB Cache
SQL DB -
. (optional)
~ St i
processed
events)
queries/
data
Event Broker tracker events——>»{Event Service DB Migration | |
Service
Identity
_______ Provider
‘ (Enterprise |
th '
Interaction ::t a Only) |
messages from o (R
= <—nteractive Learning / —y. Backend et
rasa- Share Your Bot
B k Persistent
Rasa Enterprise <—training data—» Storage
Training training requests & y Volume
Environm /< trained models,
o~ r:nt evaluation requests 3> ul
Lt resuits git commands/
repo updates
Git Server
A
Ingress/Nginx

Ul interactions

Bot Builders

https://rasa.com/docs/rasa-enterprise/1.0.x/api/architecture

